Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis.
نویسندگان
چکیده
Mammary glands, like other skin appendages such as hair follicles and teeth, develop from the surface epithelium and underlying mesenchyme; however, the molecular controls of embryonic mammary development are largely unknown. We find that activation of the canonical WNT/beta-catenin signaling pathway in the embryonic mouse mammary region coincides with initiation of mammary morphogenesis, and that WNT pathway activity subsequently localizes to mammary placodes and buds. Several Wnt genes are broadly expressed in the surface epithelium at the time of mammary initiation, and expression of additional Wnt and WNT pathway genes localizes to the mammary lines and placodes as they develop. Embryos cultured in medium containing WNT3A or the WNT pathway activator lithium chloride (LiCl) display accelerated formation of expanded placodes, and LiCl induces the formation of ectopic placode-like structures that show elevated expression of the placode marker Wnt10b. Conversely, expression of the secreted WNT inhibitor Dickkopf 1 in transgenic embryo surface epithelium in vivo completely blocks mammary placode formation and prevents localized expression of all mammary placode markers tested. These data indicate that WNT signaling promotes placode development and is required for initiation of mammary gland morphogenesis. WNT signals play similar roles in hair follicle formation and thus may be broadly required for induction of skin appendage morphogenesis.
منابع مشابه
Primary Cilia Regulate Branching Morphogenesis during Mammary Gland Development
During mammary gland development, an epithelial bud undergoes branching morphogenesis to expand into a continuous tree-like network of branched ducts [1]. The process involves multiple cell types that are coordinated by hormones and growth factors coupled with signaling events including Wnt and Hedgehog [2-5]. Primary cilia play key roles in the development of many organs by coordinating extrac...
متن کاملThe Wnt Co-Receptor Lrp6 Is Required for Normal Mouse Mammary Gland Development
Canonical Wnt signals are transduced through a Frizzled receptor and either the LRP5 or LRP6 co-receptor; such signals play central roles during development and in disease. We have previously shown that Lrp5 is required for ductal stem cell activity and that loss of Lrp5 delays normal mammary development and Wnt1-induced tumorigenesis. Here we show that canonical Wnt signals through the Lrp6 co...
متن کاملGpr177 Deficiency Impairs Mammary Development and Prohibits Wnt-Induced Tumorigenesis
Aberrant regulation of the Wnt pathway, essential for various developmental processes, is tightly linked to human breast cancers. By hijacking this evolutionary conserved signaling pathway, cancer cells acquire sustaining proliferation ability, leading to modification of physiologic properties necessary for tumor initiation and progression. An enormous wealth of knowledge on the importance of W...
متن کاملEctodysplasin/NF-κB Promotes Mammary Cell Fate via Wnt/β-catenin Pathway
Mammary gland development commences during embryogenesis with the establishment of a species typical number of mammary primordia on each flank of the embryo. It is thought that mammary cell fate can only be induced along the mammary line, a narrow region of the ventro-lateral skin running from the axilla to the groin. Ectodysplasin (Eda) is a tumor necrosis factor family ligand that regulates m...
متن کاملDirectional cell migration, but not proliferation, drives hair placode morphogenesis.
Epithelial reorganization involves coordinated changes in cell shapes and movements. This restructuring occurs during formation of placodes, ectodermal thickenings that initiate the morphogenesis of epithelial organs including hair, mammary gland, and tooth. Signaling pathways in ectodermal placode formation are well known, but the cellular mechanisms have remained ill defined. We established i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 131 19 شماره
صفحات -
تاریخ انتشار 2004